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THEORY AND NUMERICAL MODELING OF
LOW-FREQUENCY ACOUSTIC

SCATTERING FROM BUBBLE PLUMES NEAR THE SEA SURFACE

1. INTRODUCTION

In this report, we develop the physical theory and numerical techniques for modeling low-
frequency scattering from acoustically penetrable bubble plumes, including surface-image and res-
onance effects. The model plumes can have arbitrary shapes, interior sound speed fields, and
depths. In addition, a pressure relief boundary condition can be invoked at the air/sea interface,
which is taken to be flat.

1.1 Background

At low sea states and frequencies, acoustic sea-surface reverberation is fundamentally just
rough-surface scattering. However, there is now ample evidence that with increasing sea state
and/or frequency, a second scattering process appears and eventually dominates. Reference 1
provides a complete review of the subject and we will not go further into the matter here except to
say that it is now virtually certain that subsurface bubble structures are the scattering mechanism
responsible. Even with that established, the acoustic situation remains somewhat unclear because
scattering from such structures, particularly if they are resonant, is not well understood.

In the present context, "low frequency" simply means well below the resonant frequencies of
the individual bubbles (e.g., f < 900 Hz, for 10-micron bubbles). In this regime, small concentra-
tions of bubbles in the water (e.g., less than 1 % air by volume) have a negligible impact on the
density but produce a dramatic increase in the medium's bulk compressibility (a sensitive function
of the air volume fraction) and a commensurate reduction in sound speed [2, 3].

The work presented here was undertaken to clarify the scattering properties of one type
of subsurface bubble structure, the so-called "intermediate bubble plume." These are localized
collections of air bubbles that get injected into the surface scattering zone by plunging or breaking
waves. They are characterized by void fractions on the order of 1% [4, 5] so that the interior
sound speed may be as much as five times smaller than the sound speed outside. Because of
these remarkably low interior sound speeds, intermediate bubble plumes can function as resonant
cavities even at low frequencies. Only a few short-lived clouds of this type might be needed to
produce a significant contribution to the scattering cross-section from near the ocean surface.

1.2 Approach

The essentials of our approach are all present in the standard treatment of one-dimensional
scattering from a uniform object; i.e., a square well. Appendix A reviews the familiar solution

1
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GRAGG AND WURMSER

method: (a) write the fields inside and outside the scatterer as suitably general parameterized

expressions, (b) impose physical continuity at the boundaries, (c) solve the boundary continuity

conditions for the unknown parameters, and (d) insert these parameter values into the expression

for the outgoing field far from the scatterer. Figure 1 shows the result of such a calculation for a

well with a width of 3 m, exterior sound speed of 1500 m/s and interior sound speed of 100 m/s.

The transmission coefficient is a smooth function of frequency punctuated by peaks where the

internal resonances occur. The narrowness of these resonance peaks (i.e., the resonator's Q-factor)

depends on the size of the object (i.e., the width of the well) and the sound speeds involved.

1.0

0.8

0.6, I

0.4

0.2

0.0 500. 100.0 150.0 200.0 250.0 300.0

FREQUENCY (Hz)

Fig. 1 - Magnitude of the transmission coefficient for a uniform 1-D object. Sound speeds:
exterior 1500 m/s, interior 100 m/s; object size, 3 m. Dashed vertical lines are spaced at

Af = 0.5 x (interior speed)/(object size). See Appendix A for details.

The scattering problem in this report is much more complicated than that, but this complex-

ity is really not fundamental: it is merely a byproduct of dealing in higher dimensions without the

simplifying symmetry. In fact, the solution follows the same basic pattern. General expressions

for the interior and exterior fields are given in terms of the Green's functions for the two regions.
Physical continuity at the boundary is embodied in a pair of integral equations over the plume's

surface. The solution of these boundary integral equations yields distributions of surface sources

that, in effect, reradiate the scattered field. Finally, the far-field scattering amplitude appears as a

surface integral over these equivalent distributions. The resulting spectra are qualitatively similar

to Fig. 1, although the resonances are not nearly so sharp, regularly spaced, or uniform in height

for realistic bubble plumes.

Our statement of the problem for this report has its limitations. Among these are the neglect

of curvature and roughness in the sea surface (it is taken to be flat and smooth), time evolution

of the plume itself, and very large interior sound speed gradients. By omitting these effects from

2
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the current formulation we do not mean to dismiss them as unimportant. We are simply bounding
the problem by deferring these components for consideration at a later time.

2. INTEGRAL FORMULATION

The plume's boundary is a surface S with outward normal direction fn. The exterior region
£ has a constant sound speed and density. The interior I also has a constant density but its sound
speed is a function of the air volume fraction and thus may vary from point to point. Since the
sound speed throughout the bubbly water in I is lower than that of the normal water in £ (Section
6), the opposite is true of the wavenumber k = w/c: its smallest values are found in the exterior.
The situation is sketched in Figs. 2 and 3.

Fig. 2 - Sketch of a bubble plume showing its interior I, exterior E, surface S, outward
surface normal fi(r), and linear dimension D

If an actual sound speed discontinuity exists between bubbly and normal water, as shown on
the right-hand side of Fig. 3 (a and b), that discontinuity marks the surface of the plume. If not,
S may be taken to lie anywhere beyond the limit where c is effectively constant. (For that reason,
the dotted line on the left-hand side of the figure could just as well be drawn farther to the left.)
This report treats both the "sharp" and "fuzzy" boundary cases.

2.1 Equivalent Source Distributions

Kittappa and Kleinman [6] have used classical methods to formulate the boundary integral
equations that govern continuous wave (CW) scattering from a penetrable body of very general
shape. They allow the surface to have creases and corners, but restrict their attention to uniform
homogeneous interiors. We, however, will focus on the contrasting case of a smooth surface and an
inhomogeneous interior, since this more closely approximates the reality of bubble plumes in the

3
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GRAGG AND WURMSER

Fig. 3 - Sketches of sound speed and wavenumber as functions of one of the spatial coordi-
nates. The dotted lines indicate the boundary surface S.

ocean. By a straightforward adaptation of their approach to this case, one arrives at two integral
equations, valid over the surface of the scatterer, that relate the total acoustic velocity potential
U and its normal derivative V to their corresponding incident values Uinc, Vinc. These boundary
integral equations are [6, Eqs. (3.5) and (3.19)]

Uinc(y) + j dS(x) (A(x, y)U(x) - B(x, y)V(x)) = (p/pint)U(y) (la)

and

Vinc(Y) + j dS(x) (C(x, y)U(x)-D(x, y)V(x)) = (f/pept)V(y) (lb)

for y E S, where U(y) and V(y) represent limiting values as y -* S from within 6, the average of
the two densities is denoted (Pint + Pext)/2, and the kernels are

A(x, y) a {Gext(Xy) - (pext/Pint) Gint(XY)} (2a)
an(x)

B(x, y) = {Gext(xy) - Gint(xy)} (2b)

C~x, y) = n 0( ) {Gext(x,y) -Gint(xy)} (2c)
D(x, y) = 3 ){Gext(Xvy)9- (Pint/Pext) Gint(xy)} (2d)

with '9/on' indicating a derivative in the outward normal direction.

As observed in Ref. 6, the B kernel is always regular while C is weakly singular, i.e., it
diverges as E Ix - y- 0 but in a milder way than E-2 , and A and D are at worst weakly

4
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singular too. (In the familiar case where Pint = Perrt, A and D are regular.) Since the differential
area element dS is proportional to e2, the integrals of C, A, and D are analytically well-behaved,
though they are challenging numerically.

The field in the exterior region is the sum of incident and scattered parts, U = Uinc + Usca,
the scattered part being [6, Eq. (3.3) evaluated in the exterior]

Usca(r) = j dS(x) (9Gext(x,r)/an(x) U(x) - Gext(xr)V(x)) (3)

for r e C, in terms of the U, V surface data from Eq. (1). In this expression, the surface distribu-
tions U and V appear as monopole and dipole sources for the scattered field and are "equivalent
source distributions" in that sense.

The field Uinc has thus far been left unspecified. Hereafter we focus our attention on the
incident field from a point source at s. With this choice and with the s dependence made explicit
by writing U(yls) and V(yls), Eqs. (1) and (3) amount to the matrix equations

( (P/Pint)U(yls) +f ( -A(xy) B(x,y) ( U(xls) ( Gext(y's) N
(P/Pext)V(YI s) JJs dS t) ~ -C(x,y) D(x,y) J V(xls) J t 8Gax(37s) J (4)

for surface points y E S and

Usca(rls) = L dS(x) ( aGezt(x,r)/0n(x), -Gext(x,r) )( ) (5)V(Xls)(5
for exterior points r C C. For any exterior source point s, these equations are solvable for Usca(rls)
at any exterior field point r. In the next section, we concentrate on solving them in the far-field.

2.2 Far-Field Limit

We now pass to the far-field limit. With the origin in the vicinity of the scatterer, we allow s
and r to recede to distant reaches of C so that s, r > D. Then we can expand the Green's function

Gext(ys) = exp {ikextly - sl} (6)
47wly - s

and its normal derivative at a surface point y to first order in (D/s) to obtain

Gext(y,s) ~ exp{ikexts} P(s ) (7a)
47rs

ay Get(yxs) z P{likexts , y) (7b)
an~y) xt~y~s) 47rs Q(,Y

where

P(s, y) = exp{-ikext9.y} (8a)

and

Q(s,y) = -ikext ii(y).s P(s,y). (8b)

5
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Physically, this just means that the spherical incident field is approximately a plane wave through-
out the scattering region. The phase of this plane wave is kext-y, where the source direction is

= -kext. This estimate is valid only in the source terms on the right-hand side of Eq. (4).
Similarly, for a distant receiver and a surface point x, the estimates

Gt(xr) ;~ exP{ikextr}p(i x)
Gext~x~r) ~ 47rr (9a)

a G6 t(xr) P exp{iketr1}Q(ix)
Y.n(X-) 47rr Qfx (9b)

apply in the scattered field integral, Eq. (5). As a result, in the far-field regime, the scattered field
has the asymptotic form [7, 8]

F(ilk,.,) exp{ikextr} (10)

This is an outgoing spherical wave modulated by a complex amplitude F(flkext) - the scattering
amplitude or "far-field radiation pattern" in the direction i that is produced by incident plane
wave radiation with unit amplitude and wavevector kext. Figure 4 shows that k5 xt = keztkext =

(wl/c5 t)(-§). It follows that F(flkext) is the amplitude for scattering at frequency w from direction
-s into direction i. Because the frequency is fixed, we are free to leave the kext dependence implicit
and write the scattering amplitude as simply F(fl - s). This single-frequency far-field scattering
amplitude is what we will model.

Fig. 4 - Sketch of the quantities involved in the scattering function

6
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In a similar way, U(yls) and V(yls) have the far-field asymptotic forms

U 1Aexpfike~xts} (11a)
U(yIs) P t}(l4ars

and
V(y1)exp{ikexts} (lib)

V~yI~) 47rs

where U(yj§) and V(yl) are factors that depend only on the direction of s. In the far-field limit,
neglecting spherical spreading factors exp{ikeztr}/47rr and exp{ikets}/47rs, our task is first to
solve the boundary continuity condition

(fi/Pi t dS 9) -A(x, y) B(x, y) A U(xlg) P(A Y) (2
( (p/pext)M(YI) ) i dS(x) ( -C(x,y) D(x,y) V(xlg) ) Q(A ,y) (12)

obtaining U(xl) and V(xl) throughout x C S, and then to use these in calculating the scattering
amplitude according to

F(i1-s = 9 dS(x) ( Q(i, x), -P(i, x)) ( xl) ) (13)

As usual in scattering work, we are treating the exterior region as if the local value of cext
prevailing near the scatterer actually extended to infinity in all directions. In environments where
that approximation is valid, the scattered field is expressed simply and directly in terms of this
scattering amplitude. Even when the exterior region is considerably more complex (in a shallow
water waveguide, for example) the plane wave scattering amplitude remains a useful theoretical
and computational intermediate quantity [9, 10]. The remainder of this section introduces the
modification required to accommodate the simple departure from an infinite homogeneous exterior
that will be needed for scattering from a near-surface plume - namely, the presence of the air/sea
boundary.

2.3 Air-Sea Boundary Condition

We will take the flat air/sea interface z = 0 to be a pressure-release boundary. Temporarily
shifting the origin up from the center of the plume to the interface, we resolve vectors into com-
ponents parallel and perpendicular to that boundary, e. g., x = xil + xl, and denote the image
under reflection by x = x1 l - xI. The pressure relief condition can be implemented at this stage
of the problem simply by using the appropriate half-space exterior Green's function instead of
Eq. (6). All of the above results remain valid if we simply replace Gext(x,y), P(i, x), and Q(1, x)
by Gext(x,y) - Gezt(x,y), P(i, x) - P(ix), and Q(i, x) - Q(i,x). Explicitly, this means using

Gext(xy) = exp (iketlxt- I) _ exp (ikezxtIlx (14)
extkXY) 47rjx:- yj 47rlx -1 (14

P(i, x) = -2i sin (kext x I') exp{-ikezxtx-ij , (15a)

and

Q(i, x) = -2kext (sin (kext xi I ) f 11 + i cos (kext xi I ) f I) ni(x) expl-ikext x-fl }1 . (1-5b)

This is sufficient if the interface lies entirely in the exterior, i.e., if the plume does not break the
surface. We will assume so and proceed to treat plumes of that type.

7
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3. GREEN'S FUNCTIONS

In this section, we develop expressions for the Green's functions and their gradients that are
needed in the A, B, C, and D kernels of Eq. (2). For this, we define the relative vector u = x - y
and exploit the fundamental gradients of its length u; thus

E u = fi, (16a)

a = -ii, (16b)

and

aa aa u = -4/U, (16c)

where ft = u/u is the direction of u, II = fifi is the projection operator in that direction, and
4> = 1 - II is the complementary projector onto the plane orthogonal to u.

3.1 Exterior

Differentiation of Eq. (14) produces the following expressions for the half-space exterior
Green's function and its spatial gradients:

Gext(Xy) = kext ( eiw - !eiv) (17a)

aj Gext(X,y) = _ext eq( i__ q(v)eiV1 ) (17b)
47r w 2 V

'9 Gext(xy) - ex (q(wj,_ e qu v eV (17c)
ay ~47r w2 V2

and

A aa Gext(xy) = kxt (WU Jwiw _ p(v)utui-q(v)leiv) (17d)

in terms of the phase factors

w = kextlx -Y

v = kextlx -Y,

the complex functions

q(X) = ix - 1
P(X) = x2 + 3q(X)

and the unit vectors
x-y

U1 = 

A Ix-yI
UT = 

IR-yi
(whose vertical components point downward and upward as indicated by the arrow subscripts) as
well as the identity and reflection operators 1 and 1 = 1 - 26Z for which 1x = x and lx = x.

8
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3.2 Interior

Assuming small interior sound speed gradients in the sense that IAA/AI < 1; i.e.,

EWKB k(rkt(r) ) < 1, (18)
in r

we may approximate the interior Green's function by the WKB-type form

Gint XY) = 4wxu (19a)

The required gradients are then

ax Gint = Gint i (19b)Ox trn O9x U

aa Gint = Gint {i 09 u + u (19c)ay ~ ~ C0y U

ay aa Gint = Gint { u( ( - 2II) - 19W 1x + il ( W uW 1 +y u ay2x) (19d)

in terms of the spatial derivatives of the phase term o. With the line segment from y to x
parameterized by

Z(W) = y + 0u *.*.* 0 <_ < u, (20)

this phase can be expressed as the line integral

(x,y) = J kint(z (21)

from z(0) = y to z(u) = x. Its first-order gradients are consequently

-x = f +kint(x) f (22a)

4' = e -' 09~0(22b)

and, with second-order spatial derivatives of the wavenumber neglected, the second-order gradient
is

&yx u (fi{ff } + {f }ui + (f ii - kint(x))4I) - fig(x) + 2(g(x).fu)Il (22c)

in terms of the interior wavenumber gradient

g(r) = kint (r) (23)
o~r

and its integrals

e = j deg(z()) (24a)

and
f=-/~ d(g (z( (24b)

u 10

9



GRAGG AND WURMSER

Thus, the phase and its gradients can be computed by numerical quadrature and then used to
compute the interior Green's function and its gradients.

With these explicit forms for the two Green's functions, we now have all of the components
essential to the analytic specification of the scattering problem; namely, the kernels A, B, C, and
D in the continuity condition (Eq. (12)) and the P and Q functions that appear in Eq. (12) as
inhomogeneities and also as quadrature weights in the scattering amplitude equation, Eq. (13).
The remaining task is to devise a means of getting a numerical solution.

4. WIREFRAME SOLUTION

4.1 Continuity Condition

To solve the continuity condition (Eq. (12)) numerically, we first 'tile' the plume surface. This
means fitting S with a "wireframe" of N plane facets (the tiles) that are approximately uniform
equilateral triangles (Fig. 5, for example) with centers at the points xn. We then approximate the
surface integral as a sum over the wireframe, thus converting Eq. (12) into the algebraic expression

t (PPipt) I - A B g ( U()) _ ( Q(g) (25)
V -C A + D )V(s)) = P()

Here I is the N x N identity matrix; U(s), V(9) and P(s), Q(s) are the N x 1 column matrices

Un-s) = U(x-I9), (26a)

V.(s) = V(x Is), (26b)
and

Pn(9) = P(9Ixn) , (26c)

Q.(9) = Q(9jxn); (26d)

and A, B, C, and D are N x N matrices with off-diagonal elements

Amn = A(xn, xm) Sm, (27a)

Bmn = B(xnxm)SmX (27b)

Cmn = C(xnXm) Sm, (27c)

and

Dmn = D(xn xm) Sm, (27d)

where Sm is the area of the patch of the plume's surface subtended by the mth tile (see Appendix
B). These m 7& n matrix elements can be calculated directly from the definitions of Eq. (2)
using the areas and normals of the surface patches and the Green's function gradients that were
developed in the preceding section. The m = n elements require separate consideration.

4.2 Diagonal Matrix Elements

The diagonal elements are complicated by the weak singularity of some of the kernels in
Eq. (12), i.e., by their divergence as x -* y [8]. Expressions for them are derived in Appendix

10
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0.2 1Z.0

0.4 ~~~~~~~~~~~~~~0.2

0.4

-o4~~~~~~~~.
00

Fig. 5 - A spherical wireframe with 192 tiles

C and are summarized below. In these, nm and Zm are the mth surface patch's normal vector
and center depth, kint,m = kint(Xm) is the interior wavenumber at the patch center, Wm is the
integral fdS(x) 1/jx - XmI over the mth patch (Appendix B) and, as before, q(,) = i - 1.
Also appearing: S1m = 2 Zmkext, which measures the depth of the patch in units of the exterior
wavelength; 1m = 6znim, which represents the vertical tilt of the normal; and gm = nm.g(xm),
the normal component of the wavenumber gradient.

The diagonal matrix elements are

A = (~ P.t kext) 2 'S)
Amm = --- gm q(pm)el`mvmj (_) (28a)

2 Pint PM 47r

Bmm = - {i(kint,m-kext) + k( )eixt m}( 4 ) (28b)

Cmm = - (kntm - k (Wm42) - (kintm-ke) (( tT )
+ (et) [(/ vm)2 + q(pm)(1 + v.)] (m¶) (28c)

Dmm = {+-P-tgm ( qxt) q(Pm)em vm} (v f'). (28d)

The terms containing pm embody the surface-image effects. With the matrix elements provided
by Eqs. (26) through (28), Eq. (25) can be solved for the values of the source densities U, V on
each of the surface tiles.

4.3 Scattering Amplitude Equation

After Eq. (25) is solved for U(§), V(s), all that remains is to apply Eq. (13) in the wireframe
approximation; i.e.,

11
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N I' U ~~~~(XnIg)F(il -s) = ZSn(Q(iXn),-P(i',Xn)) (~ I~ns 

QT(i)U(g) - P T(i)V(g) - (29)

where Q and P correspond to Q and P with components weighted by the surface area elements
(Qn = SnQ., Pn = SnPn) and ' T 'indicates a matrix transpose.

5. MODELING METHODS

This section describes the numerical methods that we have used to implement the scattering
formulation described above. We should point out now that the pressure-relief boundary condition
that we have taken such pains to impose at the sea surface may be omitted, if desired, by simply
omitting the v, pm terms in Eqs. (17) and (28) and reverting from Eq. (15) back to the elementary
forms in Eq. (8). Indeed, during program development we supported this choice as a diagnostic
option. We have retained that option so that the final model, known as BIRPS (Boundary Integral
Resonant Plume Scatter), can also be used to model "free-space" scattering.

5.1 Construction of the Wireframe

All the wireframes are initially spherical. Their construction is handled by an algorithm that
begins with 2' tiles (m > 2) around the sphere's equator and repeatedly halves this number at
higher latitudes to control the tile size, concluding with 23 = 8 tiles around each of the poles.
These spherical wireframes are usable without modification in problems dealing with spherical
plumes. Figure 5 is the m = 4 case with a diameter of 1 m. Actually, wireframes of all shapes are
generated in this "unit" form (with a maximum diameter of 1 m) for convenience and are simply
scaled up or down as required for various problems.

To produce a wireframe for a nonspherical plume, we first simply project the spherical
wireframe's vertices radially. Figure 6 is such a radial projection of the wireframe of Fig. 5 onto an
ellipsoidal surface whose x, y, and z dimensions are in the ratio 1:2:3. Since this, too, is a "unit"
wireframe, its actual measurements are 1/3 m by 2/3 m by 1 m. Projection always deforms the
wireframe to some degree, shrinking some tiles and stretching others. This should be harmless
unless some of the tiles end up larger than a fraction of the interior wavelength. That kind of
distortion can degrade the capability for coherent simulation. When it occurs, we can compensate
by further adjusting the wireframe. We do this by a process of simulated annealing applied so
as to minimize the normalized variance of the tile edge lengths (Appendix D). This encourages
the tiles to become as nearly equilateral and uniform in area as the shape of the plume and the
topology of the wireframe will allow. The results of the procedure can be seen in Fig. 7.

The potential for modeling with such a wireframe can be assessed from the relation

N a (0

(obtained in Appendix E) in which a and ci-nt are the plume's area and average interior sound speed
and a and 3 are the constants 0.43 and 0.25, respectively. For a given plume, this expression
pertains to a uniform equilateral wireframe with tile sides equal to Aint/4. It can be used to
estimate either the minimum N required for a particular f or the maximum f at which a given
N is feasible. We will use it for both purposes and will refer to the result as the "marginal tiling
estimate" for either N or f according to context.
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Fig. 6 - Spherical wireframe of Fig. 5 projected
onto an ellipsoidal plume shape
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Fig. 7 - Ellipsoidal wireframe of Fig. 6 after annealing

We note as an aside that, although the above tiling scheme worked flawlessly, it is admittedly
somewhat lacking in flexibility in that it provides no intermediate possibilities between N = 16
tiles for m = 3 and N = 192 for m = 4. While the latter proved entirely satisfactory here, it
does represent a degree of numerical "overkill" that is undesirable for two reasons. First, there
is the practical matter of computer run time. This increases roughly as N2 , so that using an
m = 4 wireframe, for example, when the marginal tiling estimate is only 60 means unnecessarily
prolonging the execution by a factor of (192/60)2 ; 10. Secondly, a tiling method that allowed any
integral N, rather than just 16 or 192, would open the way to using a method like Richardson's
deferred approach to the limit [11] to estimate the values of integrals in the N -s oc limit. This

13
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could provide increased accuracy for less effort. In the end, it proved prohibitively difficult to
devise such a scheme that achieved the desired flexibility while covering the sphere with tiles of
controlled size and shape.

5.2 Numerical Computation of the Scattering Amplitude

Equation (25) is a 2N-dimensional linear problem of the form Mx = b and could be solved by
a variety of standard methods. We chose the LU decomposition method with iterated improvement
-a complex version of the implementation in Numerical Recipes [11]. For the modeling, we allow a
discrete set of sources, i.e., incident multipath directions {SJ; a = 1, ,Nsrc}, each corresponding
to a linear problem

Mx, = b, (31)

where

x6 =( U(,) ), b. = ( P(f) (32)

For a discrete set of outgoing directions {lp; p = 1,.* , Nrec}, Eq. (29) amounts to

Fpa =CT Xc (33)

where Fpe = F (ip, -) and

(p Qp) )34

When there are Nsrc > 1 coherent arrivals, the overall scattering amplitude has the form

Nsrc

Fp = E aFpo, (35)
0=1

with the relative amplitudes and phases of the multipath signals specified by the complex air
coefficients.

Since the whole procedure is analytically equivalent to

(Nsrc)F, = C~m-1 (iaurba)

numerical difficulties can be expected if M becomes ill-conditioned. We encountered this problem
(and were forced to switch from LU to singular value decomposition as a remedy) only for environ-
mental parameter values far outside the physical range for this application - interior sound speeds
of 50 m/s for instance. Realistic model plumes did not resonate with a high enough Q-factor to
cause the problem. Instead, the main problem for our approach is that 2N may be quite large.
This requires plenty of RAM or a virtual memory system. Fortunately, current computers are
adequate for most practical cases. The details of this point are discussed in Appendix E.

BIRPS is implemented in standard FORTRAN 77 and follows the pseudocode outline below.
Steps (a) through (c) define the problem analytically and produce a discrete representation of it.
Step (d) performs the LU decomposition. When Nsrc > 1, loops (e) and (1) scatter the multipath
arrivals coherently.

14
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(a) select the shape of S and construct the wireframe
(b) set the properties of £, I
(c) compute M

(d) LU-decompose M

(e) for of from 1 to Nsrc

(f) compute b,

(g) compute x¢ by LU back-substitution

(h) apply iterated improvement to Mx, - b, = O

next a

(i) for p from 1 to Nrec

(j) initialize: Fp = 0
(k) compute cp

(1) for a from 1 to Nsrc

(i) compute Fp, by Eq. (33)

(n) accumulate: Fp = Fp + ao * Fpc
next a

next p

The plume shape is specified in step (a) by a 'unit radius function' subroutine

SUBROUTINE urf ( theta, phi, urad, uonv )

whose inputs theta, phi are the polar angles of a point on the plume surface and whose outputs
urad, uonv are the radius and unit outward normal vector at that point. An interior sound speed
profile is specified in terms of the slowness c- by a real-valued function svp whose entry points
are the slowness itself,

ENTRY slow (xi),

and its three spatial gradient components,
ENTRY gam x (xi),

ENTRY gam y (xi), and
ENTRY gam z (xi).

The input argument xi is a distance which specifies the physical location in terms of a reference
point and direction which are communicated in a COMMON block. The distance, reference point,
and direction correspond to (, y, and i, respectively, in Eq. (20), and the functions are evaluated
at the point z(().

Once the plume's shape and interior sound speed are specified, the numerical computations
closely follow the analysis laid out in preceding sections. In particular, the Green's functions are
computed as indicated in Section 3 with the interior wavenumber gradient g, Eq. (23), obtained
directly from the components of the slowness gradient, and the integrals e and f, Eq. (24), com-
puted using Romberg quadrature routines on the components of g. Thus, to implement additional
plume shapes and interior sound speeds beyond those used in this report, the user need only supply
new versions of urf and svp.

6. PLUME RESULTS

In the following subsections we simulate plume scattering in a series of situations. Except as
noted, all of these situations incorporate the pressure-relief condition at the sea surface and involve
a single arrival. We will be computing the scattering amplitude F and plotting it (or rather its
modulus, since F is complex) as a function of various parameters in the following figures. F is
referred to a unit-amplitude incident plane wave and has the physical dimensions of a length.
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The sound speed at any point inside a plume can be related to the air volume fraction
through the general expression [2, Section 8.9]

C = [(/3Pg + (1 - M)P) ('O2 + l c )] 1/2 (36)

which gives the effective sound speed c for a suspension of gas bubbles in a liquid in terms of ,3, the
volume fraction of gas. Expert opinion [12] currently distinguishes three bubble structure categories
by air volume fraction, namely "tenuous" (/3 < 10-4), "intermediate" (10-4 < / < 10-2), and
"dense" (10-2 < /). The names refer to the number density of air bubbles thought to be present.
Figure 8 is computed from Eq. (36) for air in water and covers the full "intermediate" range. The

following simulations deal with interior sound speeds in the 300-800 m/s range and hence with
the class of bubble structures known as intermediate plumes. The same method would also apply
to tenuous plumes, without reliance on the approximations usually invoked in that regime [13-15],
and to dense plumes, provided they are static and their sound speed gradients are not too large.
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E
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0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

% AIR

Fig. 8 - Sound speed from Eq. (36) for air suspended in water throughout the "intermediate
plume" range, 0.01% <03 < 1%

6.1 Fundamental Features in Simple Situations

We begin by applying the BIRPS model to simple situations involving a spherical plume
with an isovelocity interior. An important objective of this first set of simulations is to validate
the model using fairly realistic physical parameters.

6.1.1 Azimuth Dependence

Figure 9 examines two things: the azimuth dependence of the scattering and the number
of tiles required for accurate computations. The incident azimuth is 22.5° (i.e., 3600 . 16) so
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Fig. 9 - Scattering amplitude as a function of azimuth at 125 Hz

that both the m = 3 wireframe (with eight equatorial tiles) and the m = 4 wireframe (with 16)
will be symmetric in azimuth about the source direction. Thus the scattering amplitude as a
function of receiver azimuth should inherit that same symmetry. The figure does indeed have the
expected symmetry relative to the source direction (the broken straight line). Given the diameter,
frequency, and interior sound speed, the marginal tiling estimate (from Eq. (30), see Appendix
E) for the minimum number of tiles required is 29. Indeed, the m = 3 case (dashed), which has
only 16 tiles, is about 10% below the m = 4 case (solid) with 192. The scattering amplitude is
small (only about 0.04) for these near-grazing source and receiver elevations (5° and 20 below the
horizontal, respectively). We will see that this is because these elevations lie in a horizontal notch
in the vertical dipole-type beam pattern formed by the plume and its surface image.

17

.1.

plume overall interior number annealed
shape size svp of tiles wireframe?
sphere 2 m uniform: 500 m/s 16 - dashed no

192 - solid

pressure-relief center receiver source amplitude; phase
interface? depth direction direction of source(s)

yes 2 m azim 0-360e azim 22.58
elev 85° elev 88° 1.0; O'

I I I
. . . ~~~~~~I



GRAGG AND WURMSER

6.1.2 Resonance Spectrum

Figure 10 examines the frequency dependence of scattering from the same plume without
the pressure-release interface. Here the relevant angle is simply the total scattering angle 29 =
arccos(-.i'), which is taken to be 450. Results from the present computer model are shown as
circles - o for m = 3 and * for m = 4. The heavy line represents the scattering amplitude as
computed by the semi-analytic partial wave method described in Appendix F. The broken lines are
the individual e = 0, ... , 3 partial wave contributions - s, p, d, f-wave scattering in atomic physics
jargon. The peaks clearly correspond to scattering resonances. The fth one lies very close to the
frequency (f + 1) x 125 Hz that would be anticipated from a "back of the envelope" calculation
using cext = co and it can be expected to exhibit the familiar (i + 1)-lobed structure in the angle
t9 (Appendix F). The Q-factor (i.e., the peak frequency divided by the half-width) increases with
frequency: Q 1,3,10 for f= 0,1,2.

3.0

2.0

0

1.0

-Q,~~~~~~-

0.0 A-rII ... ' i II r...'I. 
25.0 75.0 125.0 175.0 225.0 275.0 325.0 375.0 425.0 475.0 525.0

FREQUENCY (Hz)

Fig. 10 - Model results for m = 3 (o) and m = 4 (e). For comparison, computations from
Appendix F: Fl (heavy line) and IFel for e = 0, 1, 2,3 (broken lines) as functions of f

A marginal tiling estimate indicates that the m = 3,4 contributions should be accurate up
to 92 Hz and 320 Hz, respectively. According to the figure, however, this kind of estimate is
overly conservative. The o symbols depart from the heavy line somewhere beyond 195 Hz and the
* symbols are adequately close to it through at least 405 Hz. The numerical model exceeds the
marginal tiling expectations, failing only with the the onset of the f = 3 resonance around 445 Hz.
This can be understood by considering the radiation pattern for this resonance. It has four lobes
in the range 0 < 2 < 7r while the wireframe (Fig. 5) has only eight "latitude bands" of tiles in that
interval. That angular undersampling - only two tiles per angular lobe - appears to cause the
breakdown at this point. The method should work at least this well for smaller or faster plumes,
since their resonances will be shifted to higher frequencies [16, Chapter VI, Section 2].
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For the same situation, Fig. 12 shows the dependence on output elevation in the entire
vertical half-plane containing the source direction. The source direction is indicated as usual by
the broken line. Back-scattering corresponds to the right half of the figure and forward scattering
is on the left. The dashed curves are for frequencies above the resonance peak. All of the curves
have a high degree of forward/backward symmetry, evidently because only the symmetric s-wave
resonance contributes in this frequency range.
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-0.250 -0.125 0.000 0.125
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plume overall interior number annealed
shape size svp of tiles wireframe?
sphere 2 m uniform: 500 m/s 192 no

pressure-relief center receiver source amplitude; phase
interface? depth direction direction of source(s)

yes 2 m azim 202.50, 22.50 azim 22.50
elev 0 90° elev 880 1.0; 0o

Fig. 12 - Scattering amplitude as a function of elevation, parameterized by frequency. The
discrete frequencies are the same as in Fig. 11: 105 Hz to 145 Hz in 5 Hz steps. Solid:
f < 130 Hz, dashed: 130 Hz < f.
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Figure 13 repeats the computations of Fig. 12 in the vicinity of the p-wave resonance, 205
to 255 Hz. Again, the dashed curves represent frequencies above the resonance peak. Here the
forward/backward symmetry is broken by the coherent interplay between the near-resonant p-wave
response and the nonresonant s-wave response.
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plume overall interior number annealed
shape size svp of tiles wireframe?
sphere 2 m uniform: 500 m/s 192 no

pressure-relief center receiver source amplitude; phase
interface? depth direction direction of source(s)

yes 2 m azim 202.50, 22.50 azim 22.50
elev 0-90° elev 88° 1.0; O0

Fig. 13 - Scattering amplitude as a function of elevation, parameterized by frequency. The
discrete frequencies run from 205 Hz to 255 Hz in 5 Hz steps. Solid: f < 230 Hz; dashed:
230 Hz < f.
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6.1.4 Depth Dependence

For the same plume, Fig. 14 shows the near-vertical scattering response to a near-vertical
arrival as a function of the plume's center depth d in the interval 2 m< d <4 m. For comparison,
consider what Fig. 14 would look like if, rather than this large resonant plume, we were dealing with
a small nonresonant object - a "point target." Then, because both elevations are nearly vertical,
the d dependence would be sin2(kextd). This vanishes at the surface and at d = Aext/2 = 6 m and
is symmetric about its peak at d = 3 m. The actual curve in Fig. 14 is similar to that in functional
form but has its peak shifted upward by about 0.75 m, presumably due to the plume's finite size
and internal structure.

10.0

7.5

5.0
LL

2.5

0.0 L.
2.0 3.0 4.0

DEPTH (m)

plume j overall interior [ number 1 annealed
shape size svp of tiles wireframe?
sphere _ 2 m uniform: 500 m/s 192 no

pressure-relief center receiver source amplitude; phase
interface? depth direction direction of source(s)

yes 2-4 m azim 180° azim O0
elev 50 elev 50 1.0; O0

Fig. 14 - Scattering amplitude for near-vertical elevations as a function of plume center
depth at 125 Hz
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Next we turn to the near-grazing geometry where, in view of its greater practical importance,
we go into more detail. The source and receiver are held at grazing angles of 2.50 and, except
as noted, other parameters remain as indicated in the caption to Fig. 14. The object is again
to determine the depth dependence of the response in the interval 2 m < d < 4 m. This was
done through BIRPS simulations at 0.25 m intervals. First, as a benchmark case, the plume
diameter D was reduced to only 0.5 m. The plume is small relative to the exterior wavelength
(D << A.et) so that, as d -4 4 m, the response should exhibit the quadratic depth dependence
characteristic of a point target in this grazing geometry. The simulations accurately confirm the
expected d2 dependence. For the second simulation series, the 2 m diameter was reinstated and
the result was found to be more nearly linear in d. Since this plume was resonant at the frequency
considered here, it was not clear whether this nonquadratic depth dependence was produced by
the resonance or simply by the larger size. The third simulation series addressed that question.
Here, the interior sound speed was increased to 1000 m/s, which shifted the lowest resonance well
above the operating frequency. The result for this large nonresonant plume was roughly linear
for d ~ 2 m but became quadratic for d > 4 m. Figure 15 summarizes all three near-grazing
simulations. If it is assumed that the depth dependence follows some power law IF(d) xC dP, then
the exponent can be assessed from the simulations by plotting p = IF(d)I'd/JF(d)J vs d. This is
done in Fig. 15 with the depth derivative estimated by finite differences. The small-plume result
is the top curve which, as expected, indicates p = 2. The middle curve corresponds to the large
nonresonant plume. Its depth dependence starts out as rather linear at d = 2.25 m but becomes
effectively quadratic by d = 3.75 m. The bottom curve is the result for the large resonant plume.
The behavior is more nearly linear for d < 4 m, although the trend, if extrapolated, is toward
quadratic behavior at greater depths. Thus, the deviation from quadratic dependence seems to
be in part a result of large D/d. Resonance, however, enhances it, possibly by giving the plume
a larger effective diameter. Of course, a finite diameter and a resonant interior do more than just
alter the depth dependence of a plume's scattering response. They will both raise the absolute
level too, as shown in Fig. 16. The large nonresonant plume scatters at levels 10-12 dB greater
than the "point-target" plume and resonance adds another 10-12 dB.

6.1.5 Summary

We find that the low-frequency scattering responses of spherical model intermediate plumes
contain multiple weak-to-moderate resonances. The lowest-frequency resonance is an s-wave fea-
ture with a uniform azimuth response and an elevation response similar to that of a vertical dipole.
The next resonance has a p-wave character so that its azimuth response has forward and backward
lobes and its elevation response is quadrupole-like. As the frequency increases through this reso-
nance, the nature of the response shifts from weakly back scattering to strongly forward scattering.
Thus, for a receiver in the forward direction and an incident signal with a power spectrum concen-
trated around the second resonance frequency, the scattered signal would be high-pass filtered. It
is also clear that the depth dependence of scattering from realistic intermediate plumes in the first
few meters below the surface is very different from what would be expected from a point target
- especially at resonance frequencies.

6.2 Effects of Multiple Arrivals

Now we turn to an application in shallow water with several propagation multipaths. For
this simulation, we used eight vertical arrivals from a source in a shallow Pekeris environment.
Figure 17 summarizes the simulation parameters and the eight multipaths. These multipaths are

23



GRAGG AND WURMSER

2.5 3.0

DEPTH (m)
3.5 4.0

Fig. 15 - Power-law analysis of the depth dependence of the scattering amplitude for near-
grazing elevations at 125 Hz
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Fig. 16 - Scattering amplitude for near-grazing elevations as a function of plume center depth
at 125 Hz. Vertical axis is in dB relative to the value for D = 0.5 m, d = 2 m.
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sediment density 1.8 gm/cc critical angle 59.0 deg

Fig. 17 - Eigenray multipaths and simulation parameters

the eigenrays that undergo total reflection at the sediment in this geometry. The partially reflected
rays all had power levels at least 16 dB lower and have been neglected. Figure 18 shows the azimuth
dependence of the scattering at the lowest resonance frequency. This figure is a multipath version
of Fig. 9. It has the necessary symmetry but the amplitude is larger in this case by a factor of
more than twenty, which may at first glance seem unreasonably high. Indeed, even if all of the
rays somehow managed to arrive at the direct path elevation (87.71°) and combine in phase, that
could account for no more than a factor of eight. It turns out that most of this increase is caused
by the strong dependence of the scattering amplitude on source elevation. The rays that produce
the greatest response are those with the steepest grazing angles. In fact, separate simulations have
shown that the steepest ray (elevation 59.04° and 4 bottom bounces) accounts for 60% of the total
scattering response in Fig. 18 while the near-grazing direct arrival (87.71° elevation) produces only
3%. It may be worth noting here that, for shorter ranges, even some of the partially reflected rays
may need to be included.

Figure 19 shows the scattering response as a function of output azimuth at the second
resonance frequency. Here, as in Fig. 13, there are distinct forward and backward lobes due to
the 'p-wave' nature of the resonance and the proximity of the pressure-release boundary. This is
further illustrated in Figs. 20 and 21 which show the elevation dependence at the first and second
resonances.

6.3 Effects of Nonspherical Plume Shape

In this section we consider the scattering response of the ellipsoidal plume shown in Fig. 6.
The semiaxes are aligned with the standard x, y, z directions, but their lengths are in the pro-
portions 1:2:3 so that this is not a figure of revolution. As before, the largest overall dimension
is 2.0 m, so we are dealing with a plume that stands 2 m tall (in the z direction), has a width (y
direction) of 1 m and is 2 m thick (x direction).
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Fig. 18 - Scattering amplitude as a function of azimuth at 125 Hz. This is a version of
Fig. 9 with eight arrivals. For simplicity, only the m = 4 result is plotted.
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Fig. 19 - Scattering amplitude as a function of azimuth at 240 Hz
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Fig. 20 - Scattering amplitude as a function of elevation at 125 Hz
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Fig. 21 - Scattering amplitude as a function of elevation at 240 Hz
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Figure 22 examines the resonance spectrum for scattering from this structure. To avoid
unnecessary complications, this is done without the pressure-relief interface. The model results are
plotted as circles -o for the nonannealed wireframe of Fig. 6 and * for the annealed wireframe
of Fig. 7. Since this plume is physically smaller and less symmetric than the preceding spherical
one, its resonant eigen-frequencies should be higher and less degenerate [16, Chapter VI, Section
2]. This expectation is supported by the vertical dashed lines that estimate the lowest few reso-
nance frequencies according to analytic formulas from Morse and Feshbach [17, page 1420]. These
formulas,

f c j(0.7655 + 0.191e) ... B/A 1 (37)

and

f c (1 + (BIA ... BIA << 1, (38)

yield the frequencies listed in Table 1. They actually represent estimates for the lowest resonance
of a 2-D elliptical region with semi-axes A, B (B < A) and eccentricity e = J1- (B/A) . For the
y-z plane, for example, B/A = 2/3 = 0.67. The interior sound speed is c and the exterior sound
speed is effectively infinite. Equation (37) applies to a nearly circular ellipse and Eq. (38) to a
highly eccentric one. Two observations may be made from Fig. 22. First, annealing is important
since, without it, the result computed for the lowest resonance is about 20 % too high. Secondly,
the locations of the resonances agree with the predictions from Morse and Feshbach [17] about as
well as could be expected, considering that the latter derive from a 2-D depiction of the problem
with cext = Xo. The lowest resonance, for example, is about 20 Hz below the 256 Hz estimate from
Eq. (38). The nature of the peak at 540 Hz is not absolutely certain. A marginal tiling estimate
indicates that the modeling results for this wireframe should be reliable up to at least 475 Hz.
However, since this type of estimate has proved too conservative in the spherical case, the peak
in question may well be an authentic spectral feature analogous to a p-wave peak for spherical
plumes; i.e., a genuine resonance which is simply not predicted by Eqs. (37-38) because it is of
higher order.

Table I - Approximate Resonance Frequencies
from Morse and Feshbach

Plane of Frequency (Hz)
Ellipse B/A From Eq. (37) From Eq. (38)

y-z 0.67 454 256

x-z 0.33 473 486

x-y 0.50 698 497

Figures 23 and 24 use the annealed wireframe and incorporate the pressure-relief interface.
Like Figs. 9 and 12, they are done at the lowest resonance frequency of the plume concerned.
However, because this plume is not symmetric with respect to the incident azimuth, Fig. 23 need
not retain the circular symmetry of Fig. 9. A close inspection bears this out. The figure is flattened
by a factor of 0.94 in y direction and exhibits reflection symmetry relative to the x and y axes
rather than to the source direction. This is normal for the response of an object driven at an
isolated resonance. Although the power level of the resonant radiation will certainly depend on
the direction from which the object is excited, the directional pattern will depend only on the
structure of the object. Figure 23 inherits its x-y symmetry from that of the plume. Likewise, the
elevation display in Fig. 24 retains the forward/backward symmetry of the plume itself. Figure 24
also confirms the impression made by Fig. 22 that this lowest resonance is a lower Q feature for
the flattened ellipsoid than for the sphere.
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plume overall interior number annealed
shape size svp of tiles wireframe?

ellipsoid 2 m uniform: 500 m/s 192 no- o

(1:2:3) yes - o

pressure-relief center receiver source amplitude; phase
interface? depth direction direction of source(s)

no 2 m azim 157.50 azim 22.50
elev 850 elev 88.50 1.0; 00

Fig. 22 - Scattering amplitude as a function of frequency. Dashed lines indicate analytic
estimates of the resonance frequencies as described in the text.
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Fig. 23 - Scattering amplitude as a function of azimuth at 240 Hz
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0.000

-0.125

E -0.250

-0.375

-0.500
-0.250 0.250-0.125 0.000 0.125

(m)

plume overall interior number annealed
shape size svp of tiles wireframe?

ellipsoid 2 m uniform: 500 m/s 192 yes
(1:2:3) ____1_______________________

pressure-relief center receiver source amplitude; phase
interface? depth direction direction of source(s)

yes 2 m azim 202.50, 22.50 azim 22.50
elev 0-90' elev 880 1.0; O0

Fig. 24 - Scattering amplitude as a function of elevation, parameterized by frequency. The
discrete frequencies are 180, 210, 240 Hz (solid) and 250, 270 Hz (dashed).
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6.4 Effects of the Gross Features of the Interior SVP

We continue with the ellipsoidal plume envelope from the previous section, but here we allow
two features of the interior sound speed -the central value co and the vertical gradient c' -to
be adjustable parameters.

6.4.1 Weak Vertical Gradient

The gradient will be a constant c' = 50 (m/s)/m. Thus, relative to the sound speed co
at the center of the plume, the medium is 50 m/s slower at the top and 50 m/s faster at the
bottom. Without firm data about the gradients actually present in intermediate plumes in the
ocean, we are unable to be any more realistic about it. However, since buoyancy should concentrate
more air at the top, this is at least a step in the right direction. For this case, Eq. (18) yields
EWKB C c/w a3 0.03 so that the use of Eq. (19a) for the interior Green's function is well justified.

The first computation uses a sound speed of co = 500 m/s at the center. Figure 25 examines
the impact on the azimuth dependence of the scattering at 240 Hz. The solid curve is produced
with the annealed wireframe of Fig. 7. It is indistinguishable from the result in Fig. 23 which has
the same 500 m/s sound speed everywhere without any gradient. If a gradient of this size has any
effect at all, it is not to be found at near-grazing elevations. It was anticipated that annealing
might be especially important here because its effect is to reconfigure the tiles of the upper half of
the wireframe so as to improve coverage near the top where the shortest interior wavelengths occur.
The dashed curve was computed using the unannealed wireframe of Fig. 6. Evidently, annealing
is important here too, although no more so than in the constant-svp case of Fig. 22. Figure 26
shows the effect of the sound speed gradient on the elevation and frequency dependence. Again,
the sound speed gradient makes virtually no difference. There are only a few minor deviations
from Fig. 24, mainly at higher frequencies. The conclusion is clearly that interior sound speed
gradients in this regime are unimportant.

6.4.2 Reduced Central Speed

Figure 27 examines the impact of the central sound speed on the azimuth dependence -
again at 240 Hz. The weak sound speed gradient is retained but the speed at the center of the
plume is reduced to co = 400 m/s. Again, the solid curve is produced with the annealed wireframe.
This curve differs from the one in Fig. 25 in two important respects: (a) the level of the scattered
radiation is reduced and (b) although the entire plume is still reflection-symmetric with respect
to the x and y axes, its scattering response no longer is. Both phenomena can be explained
by the fact that, due to its altered internal structure, this plume is no longer being driven at
resonance. Whenever a driven system is detuned from a resonance, its output level is lowered by
an amount related to the Q of the resonance and the amount of detuning. The asymmetry here is
to be expected for any case that is not dominated by a single resonance. When the frequency lies
between two resonance peaks, they both affect the scattering response and neither one can fully
impose its characteristic symmetry on the result.

Figure 28 shows the effect of the lower central sound speed on the elevation and frequency
dependence. The "groundstate" resonance, which was in the 210 to 240 Hz range when co was
500 m/s, has been shifted down to at least 180 Hz -- roughly in proportion to co, as would be
expected. As anticipated from its slight asymmetry, the 240 Hz azimuth response shown in Fig. 27
is somewhat off resonance (by roughly 30 to 60 Hz).
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Fig. 25 - Scattering amplitude as a function of azimuth at 240 Hz. This is a version of
Fig. 23 with a vertical gradient in the interior svp, both with and without annealing in
the wireframe construction.
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shape size svp of tiles wireframe?

ellipsoid 2 m at center: 500 m/s 192 no - dashed
(1:2:3) z-gradient: 50 (m/s)/m yes - solid

pressure-relief center receiver source amplitude; phase
interface? depth direction direction of source(s)

yes 2 m azim 0-360° azim 22.50
elev 850 elev 880 1.0; 00



0.2500.000 0.125
(m)

plume overall interior number annealed
shape size svp of tiles wireframe?

ellipsoid 2 m uniform: 500 m/s 192 yes
(1:2:3) z-gradient: 50 (m/s)/m

pressure-relief center receiver source amplitude; phase
interface? depth direction direction of source(s)

yes 2 m azim 202.50, 22.5° azim 22.50
elev 00 elev 880 1.0; 0o

Fig. 26 - Scattering amplitude as a function of elevation, parameterized by frequency. The
discrete frequencies are 180, 210 and 240 Hz (solid) and 250 and 270 Hz (dashed). This is
similar to Fig. 24 but with a weak vertical gradient in the interior svp.
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Fig. 27 - Scattering amplitude as a function of azimuth at 240 Hz. This is a version of
Fig. 25 with a lower central sound speed, both with and without annealing in the wireframe
construction.
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E -0.250
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-0.500
-0.250 -0.125 0.000 0.125

(m)

plume overall interior number annealed
shape size svp of tiles wireframe?

ellipsoid 2 m at center: 400 m/s 192 yes
(1:2:3) z-gradient: 50 (m/s)/m

pressure-relief center receiver source amplitude; phase
interface? depth direction direction of source(s)

yes 2 m azim 202.5°, 22.50 azim 22.50
elev 00 elev 880 1.0; O0

Fig. 28 - Scattering amplitude as a function of elevation, parameterized by frequency.
The discrete frequencies are 150 and 180 Hz (solid) and 190 and 240 Hz (dashed). This is
similar to Fig. 26 with a lower central sound speed.

6.4.3 Strong Vertical Gradient

We now return co to its original value of 500 m/s and apply the strongest gradient that we can
accommodate with confidence in the neighborhood of 240 Hz. First we adopt a maximum allowable
value of 0.2 for the parameter EWKB Z C'/w to be used in the modeling. Since EWKB < 1, we are
justified in using Eq. (19a) for the interior Green's function. Then we use the maximum gradient
consistent with that choice at 240 Hz; i.e., c' = 0.2 x 27r x 240 ; 300 (m/s)/m. It may be seen
in Fig. 29 that the effect of this strong vertical gradient is to sharpen the resonance (raise the Q)
but not to shift it.
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Fig. 29 - Scattering amplitude as a function of elevation, parameterized by frequency. The
discrete frequencies are 180 210 and 240 Hz (solid) and 250 and 270 Hz (dashed). This is
similar to Fig. 24 but with a strong vertical gradient in the interior svp.

7. SUMMARY AND CONCLUSIONS

We have developed a numerical implementation of the boundary integral treatment of scat-
tering from acoustically penetrable bubble structures of very general type. The underlying theory
includes the effects of collective bubble resonances and our implementation provides options for the
presence of a pressure-release sea surface and for coherent multipath arrivals. The implementation,
in the form of the BIRPS software, provides a numerical modeling component for the investigation
of low-frequency surface reverberation and has the potential for wider application to the study of
resonant scattering from other complex bodies.
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We have been able to compute the complex scattering amplitudes of model structures at
frequencies up to a few hundred Hz for a range of size, shape, depth, and interior sound speed
profile. These computations were done with parameter values chosen to simulate plumes of the
"intermediate" type. We find that such plumes have multiple weak-to-moderate resonances in
the sub-kHz band of interest. The nonresonant scattering response for near-grazing geometries is
about 10 dB higher than point-target levels and tends be linear in the depth near 2 m, changing to
quadratic by 4 m. Resonance adds approximately another 10 dB to the level and extends the linear
dependence to greater depths. Typically, the lowest-frequency resonance is a low-Q feature whose
response has a weak frequency dependence with a vertical dipole-like dependence on elevation
angle. As frequency is increased, the next resonance encountered has a higher Q and exhibits
forward and backward scattering lobes. As the driving frequency is swept upward through such a
resonance, the dominant component of the response shifts from backscattering to forward scattering
at a rate dependent on the Q. Features with a significant impact on the resonance spectrum of a
plume, and on the scattering response in general, are the "primary parameters" (size, shape, and
mean interior sound speed) and the depth. Strong sound speed gradients enhance the Q of the
resonant responses, while weak gradients have no appreciable effect.

This work has focused on the resonance effects of bubble structures. We have neglected
"tenuous" bubble clouds (the large, persistent features sustained by Langmuir circulation) for

that reason. These may be of considerable potential importance in ocean acoustics, but they
are weak, nonresonant scatterers. This~ neglect, however, was purely a matter of emphasis. The
BIRPS software is certainly also applicable to tenuous clouds and may be useful in that regime,
particularly as a means of validating the approximations made in other approaches.

Two limitations of the present technique are that it treats the sea surface as flat and the
plume as static. Although surface curvature on a scale comparable to plume dimensions would
need separate treatment, curvature on larger and smaller scales could be addressed with only
moderate additional effort. For example, swell might be simulated as a time-dependent surface tilt
and small-scale roughness could be incorporated in a surface reflection coefficient. As it stands, our
approach could deal with scattering from plumes of the "dense" class - provided they remained
static. (Very strong interior sound speed gradients, if present in such plumes, would require an
improved formulation of the interior Green's function, but the approach is still sound.) Actual
dense plumes, however, have such short lifetimes that the present CW implementation of BIRPS
is probably not adequate for them. Such fast-evolving structures would require a broadband
implementation to represent their time-dependent scattering. Incorporating surface swell and
roughness and broadband signal capability into BIRPS are promising areas for future work.

The work reported in this publication was not done in a vacuum. Numerous sources have

proved valuable to the authors in acquiring the background to tackle the subject and a few have
provided inspiration for the particular approach adopted here. We have included a complete
account of this in Appendix G to help put our work in context and to assure that appropriate
credit is given.

8. ACKNOWLEDGMENTS

This work was supported by the Office of Naval Research, Code 11250A and by the Office
of Naval Technology, Code 234. The authors also wish to thank Dr. Nolan R. Davis for his advice
and assistance on the subject of simulated annealing.

40



NRL REPORT 9391

REFERENCES

1. P. M. Ogden and F. T. Erskine, "An Empirical Prediction Algorithm for Low-Frequency

Acoustic Surface Scattering Strengths," NRL Report 9377, April 1992.

2. R. J. Urick, Fundamentals of Underwater Sound (McGraw-Hill, New York, 1985).

3. K. W. Commander and A. Prosperetti, "Linear Pressure Waves in Bubbly Liquids: Compar-
ison Between Theory and Experiment," J. Acoust. Soc. Am. 85, 732-746 (1989).

4. S. A. Thorpe, "On the Clouds of Bubbles Formed by Breaking Wind Waves in Deep Water,

and their Role in Air-Sea Gas Transfer," Phil. Trans. Roy. Soc. London A304, 155-210 (1982).

5. E. C. Monahan and M. Lu, "Acoustically Relevant Bubble Assemblages and their Dependence

on Meteorological Parameters," IEEE J. Oceanic Eng. OE-15, 340-349 (1990).

6. R. Kittappa and R. E. Kleinman, "Acoustic Scattering by Penetrable Homogeneous Objects,"
J. Math. Phys. 16, 421-432 (1975).

7. E. Mertzbacher, Quantum Mechanics (Wiley & Son, New York, 1961).

8. D. Colton and R. Kress, Integral Equation Methods in Scattering Theory (Wiley-Interscience,
New York, 1983).

9. F. Ingenito, "Scattering from an Object in a Stratified Medium," J. Acoust. Soc. Am. 82,
2051-2059 (1987).

10. J. Perkins, W. A. Kuperman, K. D. Heaney, and G. T. Murphy, "Scattering from an Object in

a Three-Dimensional Ocean," presented at the 20th annual Technical Cooperation Program
(TTCP), Subgroup G, Technical Panel GTP-9, Sonar Technology, NUSC, New London CT,

October 1991.

11. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes
(Cambridge University Press, Cambridge, 1986).

12. D. Farmer, T. Ewart, F. Henyey, K. Melville, and A. Prosperetti, "Tests of Hypotheses for
Enhanced Surface Reverberation at Low Frequencies," ONR Air-Sea Executive Committee
memo (December 1991).

13. F. S. Henyey, "Acoustic Scattering from Ocean Microbubble Plumes in the 100 Hz to 2 kHz
Region," J. Acoust. Soc. Am. 80, 399-405 (1991).

14. B. E. McDonald, "Echoes from Vertically Striated Subresonant Bubble Clouds: A Model for
Ocean Surface Reverberation," J. Acoust. Soc. Am. 89, 617-622 (1991).

15. S. W. Yoon, L. A. Crum, A. Prosperetti, and N. Q. Lu, "An Investigation of the Collective

Oscillations of a Bubble Cloud," J. Acoust. Soc. Am. 89, 700-706 (1991).

16. R. Courant and D. Hilbert, Methods of Mathematical Physics, Vol. I (Interscience, New York,

1953).

17. P. M. Morse and H. Feshbach, Methods of Mathematical Physics (McGraw-Hill, New York,

1953).

41





Appendix A

UNIFORM 1-D OBJECT

This appendix reviews the solution to the one-dimensional problem of CW scattering by a
uniform object, as shown in Fig. Al. For simplicity, the density is the same inside and outside the
scatterer. For a unit-amplitude field incident from the left, the solution is found via the following
steps:

1. Form the total field in each region-

field
le+iklx + Re-iklx
Ae+ikox + Be-ikox

Te+iklx

region
-00 < X < 0
0 < x < W

W < < +00 .

R and T are the complex reflection and transmission coefficients.

2. Impose continuity on the field and its x-derivative at x = 0, w.

3. Solve the resulting equations for T, R.

k= oa/c

ko
A >

0

T p0

w

Fig. Al - Sketch of a 1-D problem, showing the notation used
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It is easily seen that, with p = e+ikw, the conditions that accomplish step 2 are

kopu -ko,*

1 1

ko -ko

O -1

o -k 1

-1 0
k1 0

With the determinant

ko1

1

ko

I*

-kol-*

1
ko

O -1

O -k 1

-1 0
ki 0

= (k1 + ko)2 * -(ki-

we have

O -1

o -ki
-1 0
ki 0

/I 0 0 -1

BD = kops 0 0 -kj
BD = 1 1 -1 0

ko ki ki 0

RD =

TD =

kop
1

ko

kop
1

ko

*

1

-ko

IL*

1

0 -1
0 -k 1

1 0

k1 0

0 0
0 0

-1 1
ki ki

= 2p*ki(ki + ko)

= -2jkl(ki - ko)

= -2i(ki - ko)(k1 + ko) sin(kow)

= 4kok1 .

Resonances may be located graphically by plotting JR1 or ITI vs frequency. They should occur
at approximately the frequencies where the bound states occur in the c -* 00 limit, namely at
f = n Af for n > 0, with an even spacing Af = co/2w. This is borne out in the body of the report
in Fig. 1. From that figure it is also clear that, even without attenuation, the acoustic resonances
have finite widths.

44

(A2)

(A3)

O P*

AD = 1 1-kl*

ko -ko

(A4)

(A5)

(A6)

(A7)

� 0 �
0

1

ki

A
B
R
T



Appendix B

SURFACE TILE INTEGRALS

This appendix evaluates Wn7 and S -the integrals that appear in the matrix elements of
the wireframe continuity condition of Section 4.

Let v1, V2, V3 denote vectors from the center of the plume to the vertices of the nth tile.
The endpoint of the vector v = (V1 + V2 + V3 )/3, then, lies at the geometric center of the tile. We
will scale v up or down as required so that its endpoint lies on the plume itself and denote the
resulting vector by a. Thus, the endpoints of v1, V2, V3 form the base of.a pyramid whose apex
is at a as in Fig. B1. The vectors pj = V- a locate the corners of that pyramid relative to the
apex.

a

/>\.,V~~~3' 

V~~~~~~~~~~~~~~V

Fig. Bi - Pyramid having a tile as its base and

its apex on the bubble plume

We first consider the shaded triangular part of one face of the pyramid shown in Fig. B2,
with r = (r, 0) denoting a radius vector from the apex to a point lying on that face, and compute

M=JJrdrdO ()

over this region by adding the contributions from the subregions I and II: M = MI + M11 where

MI = IdO dr = eq (Bi)

rP e'
M,, = / dr | dO

Jq Jcos-'(q/r)

= (p-q)E)-J dr cos- (q/r) . (B2)
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APEX

q

Fig. B2 - A pyramid face with polar coordinates

Addition and a little algebra result in

M = pH(q/p) (B3)

where

(B4)

Wn is the sum of the contributions from all six such regions (two for each face). In terms of the
perpendicular distance,

.I. =pi Xp
qij = -PA

from the apex to base edge i-j as shown in Fig. B3,

(B5)

Wn = pi(H (q3l)

+ P( (H )

P2

+ P3 (H (q23)

+ H (q12))
P1

+ H ( q23 ) 
P2JJ

+ H (q3l))
P3

The roughest estimate for Sn would be simply the area of the
pyramid's base

Sn = JP1XP2 +P 2Xp3 +p3XpiI/2.
We use a more accurate estimate,

Sn = (lplXp 2 1 + Ip2xp3 1 + Ip3 xp11)/2,

(B6)

tile; i.e., the area of the

(B7)

(B8)

the sum of the areas of the three faces. The improvement that this provides over Eq. (B7) is
significant when the height of the pyramid is a significant fraction of its base; i.e., when the
number of tiles is small.
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3

q 12
q2 3

21

Fig. B3 - Pyramid showing pi and qii for all three faces

47





Appendix C

DIAGONAL MATRIX ELEMENTS

To obtain the diagonal matrix elements given in Eq. (28), it is necessary to evaluate Eqs. (17)
and (19) in the limit x - Ym where inm is the coordinate at the center of the mth tile. In this limit,
singularities occur in the integrands. These are dealt with as follows. The integrand is expanded
in a Laurent series about the point Ix -YxmI = 0. Cancellations occur, and at worst only a simple
pole in Ix - Sm I remains. This quantity is integrable over the two-dimensional surface of the tile,
and it is evaluated analytically. The resulting nonsingular expressions are suitable for numerical
evaluation.

An intermediate result crucial to obtaining the Laurent series is given by

lim n~~u 1t 4- -X~ j
Dram u 2 Pz. u 31iUjukXZM , (Cl)

where i _ Y- Y and P m is the curvature tensor p= (1- fth) .Vi evaluated at x = Ym. The third
order tensor X is related to the second derivative of the normal. Terms containing Xgm eventually
vanish when angular integrations are performed. For a sphere of radius R,

R ( I 1 (C2)

Equation (Cl) was derived by using a coordinate system with the z-axis normal to the surface at
Ym. An expansion in the surface height was performed, and finally, the results were converted to
a coordinate-independent form.

With Wm as defined in Appendix B, and assuming for the moment that no air-sea interface
is present, the diagonal matrix elements are

1I Pext' Pext
Amm = 16^ ( 1 - ) Tr(p) Wm- ii(Xm) Vkint(Xm) Sm (C3)

Bmm = i (kext - kint(m)) (C4)
47r

0mm = 1XT (ke2Z- kint(ym)) Wm + 1 3^T -kj~nt(xm)) Sm

+ i [- Tr (t~kint(-m)) + 7Tr(p) n(m) kint(Ym)] Sm (C5)
6 ~~~~~4

Dmm = 167T (1-P ) Tr(p) Wm + 8- p nxt ) int m) Sm. (C6)

The operator VT is the derivative tangential to the surface. Recall that the ansatz used to generate
the interior Green's function implicitly made use of the WKB approximation. In the version of
the approximation used, the second derivative of kint was neglected, and it is therefore consistent
to do so in the equations above.
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Equation (28) is obtained by combining the above results with additional terms resulting
from the presence of the air-sea interface. The latter are nonsingular and their contributions to
the surface integral are found by simply evaluating the corresponding integrands at the centers of
the tiles and multiplying by the respective tile areas.
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Appendix D

WIREFRAME ANNEALING

Our wireframes, originally designed for optimal fit on a sphere, suffer distortion when they
are projected onto nonspherical plume shapes. In this appendix, we describe the method used to
correct that distortion by adapting the wireframe to the new shape.

The goal of the procedure is to produce a nonspherical wireframe whose tiles are, as nearly
as possible, identical equilateral triangles. Generally this can only be achieved in an approximate
way, so the key is to quantify the phrase "as nearly as possible." For this, we first number the
tile edges (the line segments connecting the adjacent vertices) with an index j = 1, 2,. ,L and
denote the length of the jth edge by ej. The edge lengths then have a mean value of

IL
b = -E ej (Dl)

L 3=1

and an absolute deviation, relative to that mean, of

l L
E = L E, 1e3 - b|V > O . (D2)

j=1

We note that E reaches its theoretical minimum value of zero for the ideal wireframe of identical
equilateral triangles. If the vertices are allowed to move about on the plume surface, the configu-
ration that minimizes E will approximate that ideal as nearly as possible given the shape of the
plume and the topology of the vertex connections. Thus we adopt E as an objective function to
be minimized.

With this objective function in hand, we need an efficient method for sampling the vertex
configurations and converging to the minimum. The method we chose is a novel synthesis of
two well-known techniques -the downhill simplex method and simulated annealing - that was
recently implemented as the AMEBSA algorithm*. It provides a natural way to use annealing
methods in continuous control spaces. For this approach, a wireframe configuration is specified by
the angular coordinates of all the N vertices. Each configuration may be thought of as a point

W = (01, 01, 02, 02, ' ' ', ON, ON) (D3)

in a control space of 2N dimensions. To initialize the procedure, a simplex of such configurations
(a set of 2N + 1 points in the 2N-dimensional space) is constructed. The bare downhill simplex
algorithm would operate by applying a set of "moves" (reflections, contractions, expansions, or
multiple contractions) to the vertices of this simplex, proceeding in the "downhill" direction defined
by E(w). AMEBSA enhances that procedure by using simulated annealing to inject an element
of randomness into these moves. The result is an algorithm that, as the annealing temperature T

*W. H. Press and S. A. Teukolsky, "Simulated Annealing Optimization over Continuous Spaces," Comput. Phys.,
Jul/Aug 1991.
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is gradually lowered, takes the system point efficiently downhill along any narrow valleys in the
control space and at the same time avoids getting stuck in local minima. The procedure is aptly
described by AMEBSA's authors as follows*:

At a finite value of T, the simplex expands to a scale that approximates the size
of the region that can be reached at this temperature, and then executes a stochastic,
tumbling Brownian motion within that region, sampling new, approximately random
points as it does so. The efficiency with which a region is explored is independent of its
narrowness (for an ellipsoidal valley, the ratio of its principal axes) and orientation. If
the temperature is reduced sufficiently slowly, it becomes highly likely that [the] simplex
will shrink into that region containing the lowest relative minimum encountered.

The effectiveness of the method for wireframe optimization can be seen in the following two
figures that were generated during the evolution of the annealed ellipsoidal wireframe of Fig. 7 from
its unannealed predecessor in Fig. 6. Figure D1 shows the progress of the procedure as a function
of the number of annealing iterations. While the annealing temperature is reduced monotonically
(according to an empirically determined cooling schedule), the objective function E(w) decreases
in a regular way, "freezing" into its minimum value after about 100 iterations. Figure D2 displays
the areas of the tiles in the final annealed wireframe. The "northern hemisphere" tiles are on the
left in this figure and the "southern hemisphere" tiles are on the right. The left and right halves are
nearly identical only because the plume shape on which the annealing was done is symmetric across
its equator. The dotted line marks the average tile area and the dashed line indicates a theoretical
reference value -the plume area divided by the number of tiles. The average is satisfyingly close
to the reference value and there are only a few statistical outliers. These outlier tiles, the ones
with areas above 0.01 (tile numbers near 1 and 100) turn out to be the eight tiles connected to
the north pole and the corresponding eight at the south pole. The annealing implementation used
in this report did not adjust these polar tiles effectively. Although we did not think the effect
significant enough to justify recomputing the results in this report, we have devised an improved
scheme for future use.

0.15 -9.0

-11.0

0.10
Lii

MITEMPERATURE

0.05

-15.0

0.00 J- 17.0
0.0 100.0 200.0 300.0 400.0 500.0

ITERATION

Fig. D1 - Relative variance and temperature as functions of the number of annealing
iterations

*ibid.
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Fig. D2 - Tile areas of the annealed wireframe. The dotted line is the average. The dashed

line is the theoretical limit described in the text.
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Appendix E

COMPUTATIONAL PRACTICALITY

This appendix investigates the practical issues involved in the computer solution of the
discrete continuity condition as proposed in Section 5 of this report.

As noted there, the continuity condition is a 2N-dimensional linear system of the form

M x= b (El)
2Nx2N2Nx1 2Nxl

with a known constant matrix M. First b is calculated and then the system is solved for x. For
speed and efficiency, it is desirable to do this entirely "in core." In that case, the need for (2N)2

complex RAM storage locations for M is the critical factor. This storage requirement grows with
the square of the number of surface tiles. Since the linear dimension of each tile must remain
smaller than an interior wavelength, it is clear that the number of them needed to form a surface
wireframe will be proportional to the square of the acoustic frequency. Thus, the storage needed
for M will increase in proportion to f4 .

The wireframe approach will always be practical at low enough frequencies, but it will rapidly
exhaust the RAM available in any given computing environment as higher frequencies are con-
sidered. For a quantitative estimate of the maximum practical frequency, we consider a spherical
plume with a diameter D. If 6int is a typical interior sound speed, then the corresponding interior
wavelength at frequency f is Aint = Chintzy The edges of the tiles can be no larger than a frac-

tion 3Aint of this length, where 3 < 0.25 for instance, so that the coherent details of the internal
field can be adequately sampled. The area of a typical tile can be expressed as a(i3Ait)2 where
a < 1. A square tile, for example, would have a = 1.0, while an equilateral triangle would have
a = sin(60')/2 = 0.43 . Thus

N = 7( Df ) 2 (E2)

For the present numerical estimate we use triangular tiles whose sides are one quarter of an interior
wavelength on average; i.e., a = 0.5, 3 = 0.25. Tables El through E3 list the resulting values of
2N for D values ranging from 1 to 3 meters and f in the band [50, 300] Hz with dint = 100, 200,
and 300 m/s. If we suppose that the available RAM is 8 MB, then at 4 bytes per single precision
real number (as on a VAX machine), M, a single-precision complex matrix, can be held "in core"
provided that

2N < ( 106 ) = 1000.

Inspection of these tables confirms that most realistic plume diameters and frequencies can be
handled.
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Table El - 2N for typical f and D values with i = 100 m/s
| |11 50 Hz I l0OHz 15Hz | 200 Hz [ 250 Hz |300 Hz

1 m 50 201 452 804 1256 1809

2m | 201 804 1809 3216 5026 7238

3m | 452 1809 4071 7238 11309 16286

Table E2 - 2N for typical f and D values with ci = 200 m/s

|11 50 Hz I 100 Hz 150 Hz ] 200 Hz [ 250 Hz |300Hz!

1 m 121 50 113 201 314 452
2m 50 201 452 804 1256 1809

3m 1131 452 1017 1809 2827 4071

Table E3 - 2N for typical f and D values with ci = 300 m/s
| 50 Hz I Hzj l5OHz I 200 Hz [ 250 Hz |300 Hz

1 m|| 5 221 50 89 139 201
2 m 22 89 201 357 558 804
3 mj 50 201 452 804 1256 1809
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Appendix F

PARTIAL WAVE COMPUTATION

This appendix deals with acoustic scattering from a spherical fluid body whose interior sound

speed is a function of the radial coordinate only. The analytic approach to the problem is briefly

reviewed first and then a numerical implementation is developed. The close analogy to quantum-

mechanical scattering from a spherically symmetric potential is exploited by following, wherever

possible, the analytic treatment of the problem in Mertzbacher's popular text [Fl] and by adopting
the notation used there.

The scattering body is embedded in a uniform fluid medium and both of them have the same

density. The acoustic field for this situation obeys

(O r + T(r, k)) U(r, k) = 0 (Fl)

where k = wl/c5 zt is the exterior wavenumber, n(r) = c,,t/c(r) is the refractive index, and T(r, k) =

n2 (r)k2 is the square wavenumber at r -the analog of the kinetic energy in the Schrodinger
equation.

Fl. PARTIAL-WAVE ANALYSIS

In spherical coordinates r = (r, 9, 0), the partial wave series

00 +c

U(r, k) = E E UemY-m(O, O)ue(r, k)/r (F2)
f=O m=-f

applies with each radial eigenfunction ue(r, k) satisfying

u"'(r, k) + KKe(r, k)uj(r, k) = 0 (F3)

where
Ke(r, k) = T(r, k) - ( + 1)/r2 (F4)

is the "kinetic energy" with the centrifugal term included. When e,> 0, the differential equation
is singular at the origin. The physical solution is the one for which ue(r, k)/r remains bounded.

The elastic scattering amplitude has the partial wave series F(V, k) = E 0 Fe( 9, k), where

,O is the scattering angle and

Fe(V, k) = (2e + 1)Pe(cosO) x at(k)/k . (FS)

The first factor is a known real quantity and the second involves the complex expression

ae(k) = eiSl(k) sin &e(k) (F6)
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in which Fe(k) is the Ath phase shift. For a body of radius a, classical arguments [F1, pages 234-235]

indicate that the series can be terminated at roughly e = b d-ef ka.

The problem of calculating F, then, reduces to finding a finite number of these ae terms.
This is customarily done with the aid of the real-valued auxiliary quantities j(ek), se(k), Aj(k),

13e(k) which satisfy

exp(i2&j(k)) = -hi (b) (F7a)
h~l) (b)

1

se(k) = (F7b)

Ae(k) = -is(k) + b (l) (F7c)

Ot (k) =( a dut(r,k) 1 (F7d)
ut(r, k) dr r=a

where h( I h(2) are spherical Hankel functions and ' indicates differentiation with respect to the
f' e

argument. /e(k) is the log-derivative of the radial factor ue(r, k)/r at r = a and ( is the Of -*+ 0
"hard sphere" limit of 6b. In terms of these quantities, Eq. (F6) becomes

a- ( e d2 'e-(S\ + ise) )ee sin (F8)

Another quantity of some interest is the S-matrix eigenvalue

Se(k) = exp{i26j(k)} (F9a)
( vh1 )'(b) h(2)'(b) 1

= exp{i2$j(k)} i1+b hi(b) hi(b) j (F9b)

which is the ratio of outgoing and incoming amplitudes in the Ath radial factor.

It is convenient to formulate the numerical computations in terms of ordinary cylinder func-
tions by exploiting the following standard expressions [F2]

qv(x) = ZQ,+1/2( ) (F1O)

QV(x) = -QV+ 1(X) + X-Qk (x) (Fll)

in which v is any real index, Q is one of the cylinder functions J, Y. H(1), H (2) and q is its spherical
counterpart among j, y, 0), h(. Specific forms used in the following are

h(2) H1(2)

he0(x) = He+12 (x)

he'(b) ( (he )(b) ) * (+)21/2(b) -bH+ 3/ 2 (b) (F13)

htl) (b) h 2)(b)2 bH291 (b)
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The computation of ae proceeds as follows:

* Find exp{i2(j(k)} by Eq. (F7a),

* Compute (e(k) = arg (exp{i2(f(k)}) /2,

* Compute se(k) by Eq. (F7b),

* Evaluate iOe(k) by solving Eq. (F3),

* Find Ae(k) from Eq. (F7c), and

* Find ate(k) from Eq. (F8).

To aid in the interpretation of results, one may also compute:

* Se(k) by Eq. (F9b)

* 64(k) = arg (exp{i26t(k)}) /2.

( (k), se (k) and At (k) require nothing more than some well-known special functions. The crux of
the matter is to compute /3e(k) by integrating the radial equation from r = 0 to a.

F2. SOLUTION OF THE RADIAL EQUATION

With k and e dependence suppressed for the moment, the definitions v = u' and

U (r) = u(ri)Afr) = ( -(r) )

( -K(r) 1)
(F14)

put the radial equation into the form

U'(r)-A(r)U(r) = O . (F15)

The evolution of U(r) from some point r = p to r = a can be expressed in terms of P(a, p), the
propagator matrix [F3]

U(a) = P(a,p)U(p)- (F16)

P(a, p) performs the transformation from initial values given at p to final values at a and usually
needs to be found by numerical integration. For this we use an adaptation of the trusty fourth
order Runge-Kutta routine in Numerical Recipes [F4]. The implementation is fairly straightforward
with special attention needed for only two details, namely the singularity of the equation at the
origin and the numerical instability that can occur in intervals where K(r) is negative. These are
discussed below.
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F2.1 Singularity

For e = 0, the origin is a regular point of Eq. (F3), and Eq. (F16) can be invoked with p = 0
using the initial value

( 1 ) (F17)

For e > 0, this cannot be done because the origin is a singular point. Instead, we first find an
analytic approximation for the regular solution U(p) at a point p near the origin, and then apply
Eq. (F16). The Taylor expansion

c(r) = c(O) + -yr + , (F18)

where -y is the radial derivative at the origin, implies a similar series

n'(r) = n'(0) (1- 2-y r + )(Fl9)

for the square of the refractive index. Thus, 2I-ylr/c(O) estimates the fractional error incurred in
approximating n2 by its value at the origin. To put it another way, for a set tolerance 6, the
estimate n2(r) - n2(0) is valid out to a radius

f = 2(1 )b '(F20)

The approximate radial equation in the interval [0, f], i.e., Eq. (F3) with

Kj(r, k) = T(O, k) - f(f + 1)/r2 , (F21)

has a regular solution that is easily found to be proportional to

re~1 (1 + T(O, k) r2 + (F22)

To a fixed tolerance q, then, u oc re+l and u/v = p/(£ + 1) out to a radius

r= 4f+ 6. (F23)

r)71T(O, k)

Thus, finally, we find that the proper initial value for Eq. (F16) is

((P e (F24)

at the starting point p = min(r, r).

F2.2 Stability

Because the eigenvalues of A(r) are ii(r) = ± -K(r), the character of the solution U(r)
depends on the sign of K(r). When it is positive, the fundamental solutions that make up U(r) are
both sinusoidal. Since neither of them grows to dominate the other, the numerical ode-solver has
no trouble. For negative K(r), however, the fundamental solutions are exponential, with one of
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them growing and the other decaying. Whatever the computer wordlength, if K remains negative
over a large enough interval, these exponentials will eventually differ so greatly that the ode-solver
will be unstable due to roundoff error. In the present case, the most convenient remedy for this is
to generate the solution in a series of sufficiently short subintervals and "re-orthogonalize" [F5].

An estimate of what is "sufficiently short" can be based on the case where K is constant
over an interval [ri, rf ] of length w = I rf- ri. Here the fundamental solutions starting from ri are
exp(+r - rilp) and exp(- Ir - rilp). For initial values to be faithfully propagated to rf without
significant roundoff problems, the wordlength must be sufficient for the computer to distinguish
exp(-2wp) from 0 + exp(-2w/p). The requirement is exp(-2wp) = Be where e is the machine
roundoff and B is a large number. Thus,

Wmax(Il) =-log(Be)/2ii (F25)

is the largest interval that the ode-solver can be expected to handle correctly. For e = 10-6 (typical
of VAX machines) and B = 103, for instance, Wmax(t) = 3.5/p.

In the general nonuniform case, we denote the maximum eigenvalue over the interval by f
and refine the interval into N equal subintervals [ri, rj], [rl, r21, . . , [rN- 1, rf], each much shorter
than Wmax (f). With that done, we may compute the solution at rf without significant roundoff
problems by

U(rf) = {P(rf, rNl){P(rNNj, rN-2) ... {P(r2, ri){P(rl, ri)}} .. .}}U(ri) (F26)

in which the ode-solver is invoked to compute each of the P's. Since P(r, rj) is the solution to the
initial value problem [F3]

P'(r, rj)-A(r)P(r, rj) = 0 (F27)
P(rj, rj) = 1, (F28)

we can generate P(rj+i, rj) by simply applying the ode-solver twice, with each application using
one column of the unit matrix as initial values. The order of operations mandated by the curly
brackets is crucial. The ordering

U(rf) = {P(rf, rN-l){P(rN-W, rN-2) ... {P(r2, ri){P(ri, ri)U(ri)}} I .. }}, (F29)

while analytically identical to Eq. (F26), is numerically equivalent to U(rf) = P(rf, ri)U(ri) and
thus does nothing at all to alleviate roundoff troubles.

F3. SAMPLE RESULTS

For the following results, the scattering body is one meter in radius and the exterior speed
is 1500 m/s. Figure 10 displays IF(7, k)I together with IFj(V, k)I for £ = 0, . . .,3 as functions
of frequency. The scattering angle is 450 and the interior sound speed is a uniform 500 m/s.
Resonances are to be expected near the frequencies fn = n x 125 Hz indicated by a "back of
the envelope" calculation using cezt = 00. These are confirmed in that figure. Figure F1 shows
the modulus of the total scattering amplitude as a function of frequency for the same situation
except that the interior sound speed is a linear function of radius. The average sound speed
(c(O) + c(a))/2 is held at 500 m/s as in Fig. 10 by shifting c(O) and c(a) by multiples of 10 m/s
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Fig. F1 - IFI as a function of f at V = 450. cjnt(r) is linear with cint(0),cjnt(a) taking on
the following values: (A) 500, 500 m/s; (B) 490, 510 m/s; (C) 480, 520 m/s.

in opposite senses. The figure illustrates a maxim of scattering theory: the average sound speed
determines the lowest resonance and the finer details of cint(r) impact the higher resonances.
Figure F2 shows the dependence of the total scattering amplitude on angle as well as frequency
for the same case investigated in Fig. 10. In this figure, f is varied in 1 Hz steps over the range
[50 Hz, 500 Hz] and i9 extends from 10° (near backscatter) to 170° (near forward scatter) in 100
increments. The resonances are clearly visible as ridgelike structures parallel to the angle axis.
Because of the symmetry of the problem, each of them can be associated with a unique t. As
expected, the fth resonance exhibits an (E + 1)-lobed angular structure.

Fig. F2 - IF] as a function of f and 29 for the same case as Fig. 10
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Appendix G

RELATION TO EARLIER WORK

This appendix provides further details about the place of our work. within the context of
earlier efforts.

GI. RELATED PROBLEMS

Among the scattering problems that are close kin to ours, the simplest are the exterior
problems. These deal with impenetrable targets. Some fixed boundary condition is imposed
on the surface and the scattered field is inferred in the exterior. The first of such problems
to be solved involved scattering from symmetric bounded shapes. Reference G1, for example,
derives the scattering amplitudes for shapes such as spheres and spheroids with either hard or soft
boundary conditions as closed-form expressions involving special functions. But that approach is
practical in only a few cases. A more comprehensive approach is described in Ref. G2, which treats
electromagnetic scattering from perfect conductors of arbitrary shape, addressing both analytic
methods and computer implementation. An extension of this type of problem is the treatment of
scattering from bossed surfaces [G3, G4]. In such problems, boundary conditions are applied on
an infinite planar target with irregularities, the bosses, protruding from it at regular or random
locations. Here again, classical methods based on special functions can produce valuable results
when the bosses have simple shapes. Any scattering situation is essentially an exterior problem if
the target is either totally absorbing or totally reflecting, but these two extremes do not cover the
important cases in which the target is penetrable.

Scattering from a penetrable object is necessarily an interior/exterior problem. On the sur-
face of the object, physical continuity conditions, rather than extinction conditions, are applied
and these serve to connect the interior and exterior wave solutions. In such problems, the target's
internal structure is important. Penetrable targets with spherical symmetry have been analyzed
with great success using methods that were perfected in the quantum mechanical study of scat-
tering from radial potentials [GC]. The main effect of the interior structure is the occurrence
of resonances - analogs of the nearly bound "virtual states" in atomic scattering. For individ-
ual bubbles, the lowest-frequency resonance, a monopole feature, has been analyzed with special
thoroughness [G6]. Scattering from spatial arrays of such resonant monopoles has received con-
siderable attention [G7, G8] and collective effects have been recognized. These particular analyses
have been limited to small, precisely positioned arrays and have focused on coherent phenomena
such as "superresonance" [G9-G11]. However, incoherent collective effects in large-scale ensembles
of elementary scatterers have also been analyzed. As will be described in more detail shortly, the
fundamental acoustic result of introducing large numbers of bubbles into water is an incoherent
effect - the reduction of the effective sound speed in the medium. Scattering from plumes formed
of such anomalously slow bubbly water clearly is an interior/exterior problem. Traditional meth-
ods are adequate for simple shapes with homogeneous interiors, but more realistic cases call for a
theoretical approach that is both comprehensive and numerically implementable.
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G2. BOUNDARY INTEGRAL EQUATION METHODS

Both direct and indirect numerical approaches are possible for the general scattering problem.
Direct methods operate by first generating a 3-D grid throughout the target and some of the
surrounding medium and then applying a finite difference solution method on the grid. This
straightforward approach has its drawbacks. One of these is the large number of mesh points
needed for the 3-D grid. Another is the strong dependence of solutions on the dissipation/dispersion
properties of the finite difference method that is used. Boundary integral equation (BIE) methods
circumvent those problems by an indirect approach. They need far fewer mesh points since they
use a 2-D grid (on the target surface). They also readily incorporate the far-field limit. BIE
methods begin by formulating the scattering problem in terms of 3-D volume integrals. They then
exploit Green's integral identities to convert these to 2-D integrals over the target surface. The
main historical drawbacks connected with the BIE approach have been (a) nonuniqueness of the
solution at interior resonance frequencies and (b) troublesome (1/r3 ) singularities in the surface
integrands. Recently, however, it has been discovered that a more adroit BIE formulation can
eliminate both of these.

The earliest applications of BIE methods were to exterior scattering problems. As Lamb
explained long ago [G12, article 290], direct application of an elementary BIE approach in this case
fails to produce a unique solution at the eigen-frequencies of the corresponding interior problem.
However, this no longer constitutes a barrier to the use of the method. Techniques have been
developed to overcome the nonuniqueness difficulty where it occurs [G13, G14] so that BIE methods
are now in common use [G15-G17]. Besides, many important exterior problems lie outside the
troublesome frequency range [G18].

It should be emphasized that the exterior scattering problem itself is mathematically well-
posed. When nonuniqueness occurs in BIE solutions, it is an artifact of the particular way the BIE
method is formulated. The same is true of the interior/exterior scattering problem. Here, however,
techniques to preserve uniqueness have never been widely used. Indeed, they have not been
needed at all since Kittappa and Kleinman [G19] developed an interior/exterior BIE formulation
with explicitly unique and stable solutions [G20]. Actually, Ref. G19 demonstrates uniqueness
for only a restricted range of wavenumbers, but the proof is extended in Ref. G21 to all realistic
wavenumbers.

Reference G19 also provides a means of "regularizing" the singular kernels in the surface
integrals, i.e., isolating the singular parts into a separate term which is manifestly well-behaved.
This regularized expression appears to be a promising starting point for further analysis. We
do not use it here because it does not seem to facilitate numerical computations. In numerical
applications, the weak singularity of the kernels has been handled either by boundary displacement
[G15] or, more recently, by variational reformulation of the problem [G18, G22]. Since neither of
these techniques seemed appealing from a practical standpoint for targets with arbitrarily specified
shapes and interiors, we identified and dealt with the singularities using our own method.

G3. TREATMENT OF BUBBLY MEDIA

The rigorous theory of wave propagation in media containing large random distributions
of scatterers (bubbly liquids, for instance) has been formulated in the full nonlinear by Caflisch
et al. [G23]. The result essentially validates the earlier heuristic, physically motivated results of
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van Wijngaarten [G24]. Prosperetti et al. [G25] have developed an approach that is especially
suited to describing the internal dynamics of the bubbles themselves. The linearized theory was
presented by Fouldy [G26] and somewhat later by Lax [G27]. Over the past decade and a half,
Prosperetti and his co-workers have further developed the mathematical language needed for sound
propagation through a bubbly medium [G28-G31]. This work has shown that a bubbly mixture
can be modeled as a fluid characterized by a complex effective index of refraction [G30]. For
frequencies well below the resonance frequency of the individual bubbles, the index of refraction
is real and given by the well-known Minneart formula [G32, G33].

G4. SCATTERING FROM NEAR-SURFACE BUBBLE STRUCTURES

More recently this group has applied these results to studies of the related questions of
ambient noise due to bubble structures in the ocean and acoustic scattering from these structures
[G32, G34, G35]. As a first calculation, Prosperetti et al. [G32] considered a hemisphere under
a flat surface. They solved the problem by the method of partial waves and used the results to
estimate backscattering strengths in the ocean, obtaining values compatible with the Chapman-
Harris curves. The effects of radial layering in such clouds were also considered and were found to
be of minor importance.

Sarkar and Prosperetti [G35] examined the sensitivity of the scattering cross-section to the
shape of the cloud (again, for clouds attached to the surface). They first used a T-matrix method.
This approach can, in principle, provide scattering solutions for hemispheroids or cones. However,
it turns out that the T-matrix technique is not very well behaved numerically. The situation
deteriorates as the frequency is decreased, and the problems also get worse the greater the difference
between the cloud's radius and depth. To handle this situation, they obtained a perturbative
solution valid for small cloud depths, where the bubble structure is approximated by a boss rather
than by a penetrable cloud.
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